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Abstract
In this paper, we study the competition of the linear and nonlinear lattices and
its effects on the stability and dynamics of bright solitary waves. We consider
both lattices in a perturbative framework, whereby the technique of Hamiltonian
perturbation theory can be used to obtain information about the existence of
solutions, and the same approach, as well as eigenvalue count considerations,
can be used to obtain detailed conditions about their linear stability. We
find that the analytical results are in very good agreement with our numerical
findings and can also be used to predict features of the dynamical evolution
of such solutions. A particularly interesting result of these considerations is
the existence of a tunable cancellation effect between the linear and nonlinear
lattices that allows for increased mobility of the solitary wave.

PACS numbers: 03.75.Lm, 03.75.−b

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The field of Bose–Einstein condensates (BECs) in atomic physics [1] has provided a renewal
of interest in the solitary wave and nonlinear excitations. This is especially so because
the leading order, mean-field description of interatomic interactions corresponds to a cubic
nonlinearity. This, in turn, is responsible for the emergence and experimental observation of a
variety of matter-wave solitons in BECs, including bright [2, 3], dark [4] and gap [5] solitons.
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Furthermore, atom optical devices have been proposed, such as, for instance, the atom chip
[6] that would allow the possibility to controllably manipulate such nonlinear structures.

It is well known that bright (respectively, dark) matter-wave solitons arise in BECs
with attractive (respectively, repulsive) interatomic interactions, i.e., for atomic species with
negative (respectively, positive) scattering length a.

One of the particularly appealing features of the BEC setting is the existence of a wide
variety of experimental ‘knobs’ that can be used to manipulate or control the relevant structures.
In particular, interfering laser beams can be used to produce a standing wave pattern, known
as the optical lattice, providing a periodic linear potential for the condensate. This type of
structure offers a large variety of interesting phenomenology including Bloch oscillations,
Landau–Zener tunnelling, dynamical instabilities, gap excitations among many others and a
considerable amount of review works have already been dedicated to this topic [7–9].

On the other hand, magnetically-induced Feshbach resonances can be used to modify at
will both the magnitude and the sign of the scattering length by tuning the external magnetic
field; see, e.g. [10] and also [2, 3] where the Feshbach resonance in 7Li BECs was used for the
formation of bright matter-wave solitons. The ability to modulate the scattering length has led
to a large variety of studies where this mechanism has been used. For instance, time-dependent
modulations of the scattering length were proposed as a means of preventing collapse in higher-
dimensional BECs [11], or as a way of producing robust matter-wave breathers [12], among
others.

A more recent suggestion has been to add to a constant-bias magnetic field a gradient in
the vicinity of a Feshbach resonance, allowing for a spatial variation of the scattering length,
thereby providing what has come to be termed a ‘collisionally inhomogeneous environment’.
Note that, given the availability of the magnetic and optical (laser-) fields, the external trapping
potential and the spatial variation of the scattering length can be adjusted independently
(see [13] for more details on the relevant configuration). In this latter setting, a variety of
propositions of interesting dynamical phenomena have been made concerning scenarios for
the emission of solitons [14], delocalizing transition of matter waves [15], or the dynamics of
the waves in random [16], linear [17], periodic [18, 19] or localized [20] spatial modulations.
A number of more mathematically minded results on the existence and stability of waves
have also appeared in [21, 22] and a technique for analytically constructing exact solutions
is given in [23]. Focusing, more specifically, on the results of [21], we should note that they
discussed the connection between the maximum/minimum of the nonlinear lattice potential
and the stability/instability (respectively) of the solitary waves. They illustrated how the mode
associated with the translation of the wave is varied in the presence of such microstructure for
different regimes of a natural ratio parameter (of the width of the beam versus the characteristic
scale of the microstructure).

The framework of collisionally inhomogeneous environments in combination with
external optical lattices provides an ideal environment for competition. This was illustrated
in examples of modulational instability of Bloch states [19] and of the delocalizing transition
in one dimension [15]. In the present work, we develop these ideas exploring more general
lattice profiles. In particular, external (linear) potentials and collisional (nonlinear) potentials
in (as well as out of) phase will be considered. It will be demonstrated that when in phase,
these potentials provide a competition leading to a number of interesting effects including
stabilization/destabilization thresholds and even the mutual annihilation of the two potentials
to provide an effectively quasi-translationally-invariant environment. The effective potential
landscape where the solitary waves (of the bright type) live will be obtained following the
Lyapunov–Schmidt considerations of [24]. Then, the relevant (translational) eigenvalue of
the linearization will be computed based on the curvature of this effective potential landscape
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and the stability/instability of the waves will be assessed (and the relevant transition points
will be obtained). These results will be confirmed by a second independent method based on
a direct count of unstable eigenvalues. Finally, we will examine the variation of a number of
relevant key parameters (such as the amplitude, the wavenumbers or the relative phase) of the
potentials, in order to evaluate the validity of the approach. Furthermore, when the structures
are unstable, we will examine what this approach can suggest regarding the actual instability
evolution dynamics. The understanding that we will develop will enable us to manipulate the
ensuing solitary waves in such a complex territory and to understand their dynamical behaviour
in the presence of linear and nonlinear lattices. It should be highlighted that while the methods
that we will consider herein are previously established, to the best of our knowledge, they have
not been previously used in this physically interesting problem involving the competition of
the linear and the nonlinear potential. Addressing qualitatively as well as quantitatively the
existence, stability and dynamics of the solitary waves in the presence of such a competition is
the principal focus of this work, and the possibility of a complete cancellation between these
two competing potentials is a phenomenon that we report that could have direct physical and
possibly experimental implications.

Our presentation will be structured as follows. In section 2, we will present our analytical
results; in section 3, we will corroborate these results by means of numerical computations.
Finally, in section 4, we will summarize our findings and present some interesting directions
for future study.

2. Analytical results: solitary wave statics and dynamics

The prototypical framework in which we will consider the above-discussed competition of
the linear and nonlinear lattices is that of the perturbed nonlinear Schrödinger equation of the
form

iut = − 1
2uxx − (1 + εn1(x))|u|2u + εn2(x)u. (2.1)

In equation (2.1), (x, t) ∈ R × R
+ and u ∈ C. While we will keep the presentation of the

mathematical results as general as possible, the particular case of interest in the selection of
the nonlinear and linear lattice will, respectively, be

n1(x) = A cos(k1x), n2(x) = B cos(k2x + �φ), (2.2)

where A,B, k1, k2 and �φ are real constants. Note that the lattices have the same functional
form, which will allow us to reveal more lucidly the relevant competition between the
corresponding terms. In the chosen scaling, ε is the linear lattice amplitude. We also
observe that one of the lattice vectors k1,2 can be chosen arbitrarily due to proper scaling of the
spatial coordinate. In particular, the choice k2 = 2 corresponds to the units where the lattice
amplitude ε is measured in terms of the recoil energy (see, e.g., [8]).

When ε = 0, equation (2.1) has the well-known stable localized soliton solution given by

u(x, t) = √
µsech[

√
µ(x − ξ)] ei[v(x−ξ)+δ], (2.3)

where µ > 0, ξ = vt is the position of the soliton centre, v is the velocity of the soliton and
δ = (v2 + µ)/2.

We presently focus on the stationary modes with v = 0. Given the monoparametric nature
of the family of the respective solutions, we can fix µ in what follows (in fact, we will fix µ = 2
in our numerical computations below). Because of the rotational and translational invariance
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of the unperturbed equation, this solution is unique only up to rotational and translational
symmetry.

On the other hand, when ε > 0, the translational invariance of the equation is broken,
which may naturally lead to the potential destabilization of the localized states, depending on
the perturbation parameters. This is the problem that we will examine in what follows under
the influence of both the linear and nonlinear lattices.

2.1. The Hamiltonian perturbation approach

The existence and nature of localized solutions to perturbed Hamiltonian systems, of which
equation (2.1) is a particular case, was studied in [24] (and subsequently in a broader setting
in [25]). A general perturbative approach was developed in these works based on Lyapunov–
Schmidt solvability conditions [26], and relevant stability calculations were formulated on the
basis of the Evans function [27, 28]. Here, we present some of the general features of the
theory, adapt our problem to the general framework of [24, 25] and subsequently apply these
methods to the problem of interest. In order to apply these criteria, it is convenient to recast
equation (2.1) as

du

dt
= −i

δE

δu∗ , (2.4)

where E(u) = E0(u) + εE1(u). Here,

E0(u) =
∫ +∞

−∞

1

2
(|ux |2 − |u|4) dx, (2.5)

and

E1(u) =
∫ +∞

−∞

(
n2(x)|u|2 − 1

2
n1(x)|u|4

)
dx. (2.6)

Then, for fixed µ, the intuitive condition for the persistence of the wave is given by [24]

∇ξE1(u) = 0, (2.7)

where ξ is the previously-free parameter associated with the invariance (in the case of
translation, it is the centre of the pulse (2.3)). This condition implies that the wave is going to
persist only if centred at the parameter-selected extrema of the energy (which are now going
to form, at best, a countably infinite set of solutions, as opposed to the one-parameter infinity
of solutions previously allowed by the translational invariance).

Equally importantly, from this expression and from the nature of the wave, one can
infer stability information about the solution of interest. In particular, the stability of
the perturbed wave is determined by the location of the eigenvalues associated with the
translational invariance; previously, the relevant eigenvalue pair was located at the origin
λ = 0 of the spectral plane of eigenvalues λ = λr + iλi . On the other hand, we expect the
eigenvalues associated with the U(1) invariance (i.e., the phase invariance associated with
the L2 conservation) to remain at the origin, given the preservation of the latter symmetry
under the perturbations considered herein. To compute the relevant eigenvalues, we refer to
the framework put forth by the works of [24, 25] (adapting the notation of the latter work)
in the following form. Using proposition 6.1 of [25], we expect that the perturbed system
eigenvalues will be given by the matrix equation:

det
[
M1 + λ2

1DG

] = 0, (2.8)
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where

DG =
(

(∂xu
0,−xu0) 0

0 −2(u0, ∂µu0)

)
=

(
µ1/2 0

0 −µ−1/2

)
; (2.9)

also, M1 is given by

M1 =
(

∂
∂ξ

(
∂E1

∂(u0)�
, ∂ξu

0
)

0

0 0

)
=

(∫ (
1
2

d2n2
dx2 (u0)2 − 1

4
d2n1
dx2 (u0)4

)
dx 0

0 0

)
. (2.10)

In the formulation of [25], the relevant eigenvalues are obtained to leading order as
λ = √

ελ1, and u0 denotes the solitary wave of equation (2.3). Hence, we conclude from
equation (2.8) that as indicated above, the eigenvalues associated with the rotational invariance
will be preserved at λ = 0, while the translational eigenvalue will be shifted according to

λ2 = − ε

µ1/2

∫ (
1

2

d2n2

dx2
(u0)2 − 1

4

d2n1

dx2
(u0)4

)
dx. (2.11)

Hence, the corresponding eigenvalue can be straightforwardly evaluated, provided that
we first compute the extrema of the effective energy landscape E1, which, as a function of ξ ,
will hereafter be denoted as Veff(ξ), or more precisely Veff(ξ) = εE1. This Veff will be the
effective energy landscape and the stability or instability of the configuration will be associated
with the convexity or concavity of this effective energy landscape.

We now proceed to evaluate the relevant expressions of the general theory for the special
case of interest herein, namely for the potentials of equation (2.2). The effective energy
landscape can be evaluated after performing two straightforward contour integrations that
yield

Veff(ξ) = −επAk1
(
k2

1 + 4µ
) cos(k1ξ)

12 sinh
(

πk1
2
√

µ

) + επBk2
cos(k2ξ + �φ)

sinh
(

πk2
2
√

µ

) . (2.12)

In the simple case of A = �φ = 0, the above result reduces to that in [24], which leads to the
well-known conclusion of [29], according to which a maximum of a linear periodic potential
leads to an unstable solitary wave configuration, while the opposite is true for a minimum
of a periodic potential. However, in our case, there is an intriguing interplay between the
last term stemming from the linear optical lattice and the A-dependent term, emerging from
the nonlinear optical lattice. This competition leads to the potential for stability–instability
transitions for the wave, based on the properties of the trapping (such as (A,B, k1, k2,�φ)),
but also the properties of the wave itself (since the expression of (2.12) is explicitly dependent
on µ).

A particularly important feature of equations, such as equations (2.11) and (2.12), is that
they provide a quantitative basis for understanding the dynamics of the solitary wave for any
set of potential parameters within (2.2) and even more generally (through equation (2.11))
for any type of linear and/or nonlinear potential. The generality of these results allows us to
obtain a detailed handle on the relevant phenomenology irrespectively of the detailed specifics
of the parameters. It also allows us to tune available parameters (such as the easily tunable
intensity of the linear optical lattice) to achieve different effects such as to render the soliton
stable, or unstable or neutral (in which case, it may be mobile; see below).

2.2. Eigenvalue count approach

It is worthwhile to note, however, that the above stability results, based on the formulation
of [24, 25], can also be alternatively derived using the approach of [29, 30]. We present
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this alternative formulation here, since we consider it to be a nice complement to the direct
eigenvalue computation of [24, 25] using the Hamiltonian perturbation technique. It is well
known that the stability of the solitary wave [25] is determined by the number of negative
eigenvalues of the operators

Lε
− = −1

2

d2

dx2
− (1 + εn1)(u

ε)2 + εn2 +
µ

2
, (2.13)

Lε
+ = −1

2

d2

dx2
− 3(1 + εn1)(u

ε)2 + εn2 +
µ

2
. (2.14)

In particular, if n(L) denotes the count of negative eigenvalues and |n(Lε
+) − n(Lε

−)| > 1
[30], then the solitary wave is unstable. The superscript ε in the operators is to distinguish
the ε �= 0 and the ε = 0 cases. In the latter, L0

+ is well known to have a single negative
eigenvalue (−3µ/2) with an eigenfunction spanned by (u0)2 and a single zero eigenvalue
with an eigenfunction spanned by du0/dx, while L0

− has no negative eigenvalues and a single
zero eigenvalue with an eigenvector spanned by u0. In the perturbed case, Lε

− retains its zero
eigenvalue with eigenvector spanned by uε . Also, from the perturbation theory of Schrödinger
operators [31], it is known that Lε

+ has a negative eigenvalue near −3µ/2, and a second
eigenvalue near 0, which will be denoted by λLε

+
. Both of these eigenvalues are analytic in

ε, at least in the neighbourhood of the real axis. Then the stability question (given also that
for this branch of solutions dN/dµ > 0 [25]) is completely settled by the count of negative
eigenvalues of Lε

+. In particular,

• if Lε
+ has two negative eigenvalues, then the solitary wave will be unstable since∣∣n(

Lε
+

) − n
(
Lε

−
)∣∣ = 2;

• if Lε
+ has only one negative eigenvalue, then the coherent structure will be stable.

Hence, the stability issue hinges on the shift of the zero eigenvalue (corresponding to
translational invariance, when ε = 0) in the presence of the perturbation. Thus, similar
to [29], we will consider the quantity

(
Lε

+u, u
)

with u being the eigenvector corresponding
to the eigenvalue λLε

+
; here, (v,w) denotes the L2-inner product of v with w. u can be

decomposed as u = u‖ + u⊥, where u‖ is proportional to duε/dx and (u⊥, duε/dx) = 0.
Along the lines of [32, 33] one can show that ||uε − u0||H 2 → 0, and therefore u‖ → du0/dx

(up to a proportionality factor) as ε → 0. From perturbation theory [34], it is also known that
the eigenvector u of Lε

+ is analytic in ε. Therefore, u⊥ → 0, and actually u⊥ ∼ ε, i.e., it will
be of the order of the perturbation. Then, we have(

Lε
+u, u

) = (
Lε

+u‖, u‖
)

+ 2
(
Lε

+u‖, u⊥
)

+
(
Lε

+u⊥, u⊥
)
. (2.15)

However, each of the second and third terms will be of order higher than the first (at least
O(ε2), while the dominant one will be of O(ε)), hence the solitary wave stability will be
determined by

(
Lε

+u‖, u‖
)
. But then

(
Lε

+u, u
) = r2

(
Lε

+
duε

dx
,

duε

dx

)
+ O(ε2), (2.16)

where r is an appropriate proportionality factor (between u‖ and duε/dx). By means of a
direct computation (differentiating the equation satisfied by the stationary state), one has that

Lε
+

duε

dx
= −ε

dn2

dx
uε + ε

dn1

dx
(uε)3, (2.17)
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which, in turn, forming the inner product with duε/dx, and integrating by parts leads to the
key result, namely,

(
Lε

+u, u
) = r2ε

∫ (
1

2

d2n2

dx2
(u0)2 − 1

4

d2n1

dx2
(u0)4

)
dx + O(ε2). (2.18)

The relevant integral term of the right-hand side can be seen by direct inspection to be equivalent
(up to a negative-definite proportionality factor) to the expression for λ2 in equation (2.11).
Its positivity (indicating a shift of the zero eigenvalue to positive values) will imply stability,
while its negativity (indicating a shift of the zero eigenvalue to negative values) will lead
to instability. This conclusion is fully equivalent to the ones obtained from equation (2.11)
(although the latter, in some sense, contains additional information yielding a quantitative
measure of the relevant eigenvalue).

2.3. Solitary wave dynamics

In order to describe the dynamics of a soliton of equation (2.1) at ε � 1, one can employ the
perturbation theory for the NLS soliton [35], or more precisely, the adiabatic approximation.
If ε �= 0 then ξ �= vt and has to be found from the equations of the adiabatic approximations.
The straightforward algebra yields

d2ξ

dt2
= − 1

N

∂Veff(ξ)

∂ξ
, (2.19)

where N = ∫ |u|2dx = 2
√

µ is the number of particles (it is an integral of motion of (2.1)).
It follows from (2.19), (2.12) that there exist different types of motion of the soliton. In

particular, if k2 = k1 = k and �φ = 0, the soliton dynamics reproduces the mathematical
pendulum. The respective motion of a soliton can be either periodic or translational (i.e.,
unbounded), depending on the initial conditions.

The combined effect of the two lattices can result either in enhancement of the potential
relief, and thus in damping of the soliton motion, or in weakening the effect of the periodic
structure through diminishing the amplitude of the potential. Which of the two regimes occur
depends on the phase shift (we assume that A is positive). The strongest enhancement of the
effective periodic relief occurs at �φ = π and k1 = k2. In the opposite case of in-phase
lattices, where �φ = 0 and k1 = k2, they compensate each other. A special case arises for
A = Acr = 12B/(k2 + 4µ), in which case the right-hand side of (2.19) becomes identically
zero and in the adiabatic approximation ξ = vt , i.e. the motion becomes linear because the
periodic nonlinearity effectively compensates exactly the periodic potential.

The effect of the periodic potential on the motion of a soliton depends on the interplay
between the soliton width 1/

√
µ and the periods of the lattices 2π/k1,2. The effect of the

periodicity becomes exponentially weak in the case where 1/
√

µ � 2π/k1,2. This is the limit
of a small amplitude soliton bifurcating from the linear spectrum and can be viewed as a gap
envelope soliton (see, e.g., [8, 19] and references therein). This phenomenon is also referred
to as homogenization.

More sophisticated evolution scenarios can be observed for k2 �= k1 depending on whether
they are commensurable or not.

3. Numerical results

We now proceed to describe our numerical results comparing them with the analytical
prediction of the previous section. We use ε = 0.1 (for which we expect the perturbative
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Figure 1. The top left set of panels show the cases of A = 0.5 (unstable, left) and A = 2 (stable,
right). Both the solution profile (solid line) and the effective potential (dashed line) is shown in the
top subplots, while the spectral plane of (λr , λi ) is shown in the bottom. The presence of a real
eigenvalue indicates instability in the latter. The right panels show the ‘trajectory’ of the relevant
eigenvalue (real part in the top and squared eigenvalue in the bottom) as a function of A. The solid
line indicates the numerical result while the dashed line the analytical prediction for the eigenvalue.
The bottom panel shows the evolution of the unstable configuration for A = 0.5, in the effective
potential (shown out of scale in the graph by a dash-dotted line). In this spatio-temporal contour
plot of the squared modulus (in fact, its opposite is shown for clarity) of the solution, the result of
the solitary dynamics of equation (2.19) is superposed as a thick dashed line. It is clear that the
solution, as a result of the instability, oscillates between two maxima of the effective potential.

description to still be meaningful), and vary the relative parameters of the two lattices (linear
and nonlinear).

Our first set of numerical results consists of setting B = 1 and k1 = k2 = 2π/5,�φ = 0
and varying A. In this way, we can test the validity of our predictions for amplitude variations
(in this case of the nonlinear lattice). Our results are summarized in figure 1. We have varied
A ∈ [0, 2], finding that there is a stability change within this interval. In particular, the left
panel of the figure shows the case of A = 0.5 which is unstable, and of the stable A = 2.
The right panel shows this transition in terms of the real part (and also of the square) of the
relevant eigenvalue associated with the translational mode. It is found that this eigenvalue
pair starts out as real, for small A, and becomes imaginary for A > 1.33. We use equation
(2.11) to theoretically predict this transition as occurring at A = 1.253. While we see that
both qualitatively and fairly quantitatively the dependence of the eigenvalue on the parameter
is captured accurately by our theoretical result, it is meaningful to rationalize the ≈ 6% error
in the critical point estimation. It is, in fact, observed that the soliton does not maintain its
amplitude in this continuation process (as a function of A), but rather that its amplitude is
reduced from ≈1.455 for A = 0 to 1.353 for A = 2. This clearly shifts the critical point
upwards, whose analytical expression in this setting of k1 = k2 and �φ = 0 can be easily
seen to be Acr = 12B/(k2 + 4µ). This is in agreement (in fact, even quantitatively, if one uses
the above amplitude variation) with what is observed in our numerical results.
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Figure 2. Same as figure 1, but for the case where k1 is varied (i.e., one of the wavenumbers,
instead of the amplitude A). The top left panels show the solution (solid line) and effective potential
(dashed line) for k1 = 1 (left subplots) and k1 = 2 (right subplots), as well as the corresponding
spectral plane for the stability (bottom subplots). The top right panels show the theoretically
predicted (dashed line) versus numerically obtained (solid line) eigenvalue of interest. The bottom
panel shows the spatio-temporal evolution of the unstable case with k1 = 1, exhibiting oscillations
in the effective potential landscape (shown out of scale by a dash-dotted line).

In the bottom panel of the figure, we show the result of the unstable dynamical evolution
for the case of A = 0.5. It can be seen that as a result of the dynamical instability the solitary
wave starts moving to the left, eventually executing oscillations between the two maxima
of the effective potential of equation (2.12). In the same plot, we show the result of the
adiabatic soliton perturbation theory in this case (this is a rather ‘stringent’ test of the theory
given the unstable dynamical evolution). We observe that equation (2.19) performs well in
approximating the soliton trajectory over the first oscillatory cycle. However, for longer times,
we observe it to gradually increasingly fail to capture the relevant oscillation. This can be seen
to be due to the fact that the solitonic trajectory emits small wakes of radiation as it arrives at
the turning points, resulting in a weakly damped oscillation, a feature which is not captured
by our present considerations. However, we note in passing that methods similar to those
developed by Soffer and Weinstein [36] can be potentially used to rigorously account for such
corrections.

Our second parameter variation involved the role of the wavenumbers. In particular, for
the results reported in figure 2, we have used A = B = 1, and fixed k2 = 2π/5 and �φ = 0,
varying k1. One can see that in this case, the effective potential landscape changes significantly
in terms of its local structure (in the previous example, it did not change, in that it was simply
two cosinusoidal terms with different signs, so it was simply a matter of which had the largest
‘strength’). The other important feature is that in this case, as well, there is a transition from
instability to stability, as k1 is increased. In fact, the theoretical prediction for the critical
point is k1 = 1.433, while the numerical one is k1 = 1.46. Once again this can be seen for
the two different settings of the left panel (the unstable case of k1 = 1 and the stable case
of k1 = 2), and is captured extremely accurately by the prediction of equation (2.11) about
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Figure 3. Same as the top panels of the previous figures. The left panels show the configuration
and its stability for �φ = 2 (leftmost panel, the wave is shifted to the right) and �φ = 4 (where
the wave is shifted to the left). The right panel shows the relevant unstable translational eigenvalue
in the top subplot and the centre location of the wave in the bottom subplot. The theoretical results
are given by dashed lines and compare very favourably with the solid lines of the full numerical
results.

the location of the relevant eigenvalue (associated with translation). Furthermore, once again,
the effective potential landscape that can be computed from equation (2.12) can provide very
useful information not only about the stability of local extrema but also about the instability
dynamics. The latter is observed in the bottom panel of the figure. Note, however, that while
the effective potential predicts accurately the turning points of the solitary wave dynamics,
the situation is more complicated with the dynamical equation of motion of (2.19). While,
once again, the latter predicts very accurately the first oscillation cycle, its non-accounting of
the radiative corrections of the motion leads to dynamics that overcomes the shallow potential
barrier at x = 0; this is not true, however, for the full PDE dynamics. This should serve as a
note of caution in regard to using the adiabatic approximation in such (marginal) cases.

We also explored the role of the phase difference between the linear and nonlinear lattices
in figure 3, by varying �φ ∈ [0, 2π ], for A = B = 1 and k1 = k2 = 2π/5. One of the
particularly interesting features of this example is that while the instability of the original
configuration is not modified by this variation, the location of the solitary wave is. This is
naturally expected on the basis of equation (2.12). In particular, we observe that the bright
soliton’s centre location features an oscillation around ξ = 0, of period 2π (as expected); for
�φ ∈ (0, π), the wave is shifted to the right, while for �φ ∈ (π, 2π), it lies to the left of the
origin. In this case, we examine both the prediction for the relevant unstable eigenvalue, as
well as the prediction of our theoretical results for the location of the centre of the structure.
The numerical results once again align extremely well with the theoretical ones, confirming
the validity of our theoretical findings.

Finally, we also considered a case in the neighbourhood of the complete mutual
cancellation of the two contributions of the effective potential. This cancellation is a general
effect that occurs for Acr = 12B/(k2 + 4µ), for k1 = k2 ≡ k. In particular, for the case of
k1 = k2 = 2π/5, and for B = 1,�φ = 0, we examined the dynamics for A ≈ 1.33, whereby
in accordance with figure 1, the relevant (translational) eigenvalue is numerically found to be
returning to λ2 = 0, thereby restoring a regime of effective translational invariance. In this
setting, we initialized a stationary soliton boosted by a factor of exp(iκx), with κ = 0.1, in
figure 4 (other values of κ were also used with similar results). We observe that the soliton
appears to propagate with a speed near the originally ‘assigned’ one, being submitted only to
very weak modulations due to the weak (in this case) effective potential. These modulations
are accompanied by oscillations of the solitary wave amplitude and lead to a speed slightly
larger than 0.1 (shown by thick dashed line in figure 4). We note that in this way we can induce
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Figure 5. Examination of the robustness of the cancellation mechanism to perturbations: the
figures show the same case as in the left panel of figure 4, but for ε = 0.2 (left panel) and for
�φ = 0.1 (right panel).

the robust motion of the waves over the combined linear and nonlinear lattice terrain. A similar
result is also shown in the same figure for a different value of k, namely k1 = k2 = k = π/10,
with a periodicity four times larger. In this case, our theoretical prediction for Acr is 1.482
which is again close to the numerically obtained value of ≈1.57. For the latter value, we
observe again the soliton propagating at nearly-constant speed (except for a small region close
to the maximum of the potential, where it decreases its amplitude and accelerates).

The robustness of this cancellation mechanism against variation of parameters was further
tested in figure 5. In particular, the left panel of the figure shows the same test case as the
left panel of figure 4, but for ε = 0.2, i.e., twice as strong perturbations. We can still see
that the soliton propagates nearly freely under the combined effect of the two potentials, as
would be predicted based on our approach (which suggests that the cancellation should be
independent of ε, for small enough values of ε). Finally, in the right panel of the figure, we
have examined the same case as in the top left of figure 4, but now for �φ = 0.1. In that
case, our theoretical prediction of equation (2.12) suggests that a cancellation between the
functional form of the two potentials no longer takes place and hence we should not expect
the free propagation reported previously. Indeed, in this case, the solitary wave is, in fact,
reflected and cannot overcome the resulting, non-vanishing effective potential barrier. Note
that this apparent sensitivity to phase variations should not affect the potential observability
of this effect, as the phase of the potentials can be tuned fairly precisely [9].
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4. Conclusions

In this paper, we have examined the evolution of bright solitary waves in the presence (and
competing effects) of linear and nonlinear lattices. We have computed the effective potential
landscape that the wave encounters in this newly considered competition between the two
lattices and have explained how its curvature is associated with the wave stability. The
relevant translational eigenvalue has been explicitly computed and the transitions from stability
to instability due to the zero crossing of this eigenvalue have been quantified as a function
of the system’s parameters. The same threshold condition has been obtained independently
from a direct eigenvalue calculation. It has been shown that these theoretical frameworks
capture accurately the location of the stationary waves, as well as the pertinent eigenvalues,
hence they constitute valuable tools for inferring existence and stability information about the
coherent structures of such models. On the other hand, the ensuing potential energy landscape
can be used to derive a dynamical equation for the motion of the soliton; however, there is a
number of notes of caution that should be made in that regard, as the latter may not capture
entirely accurately the dynamical behaviour, especially in ‘marginal’ cases, due to the role of
radiative corrections. It is also possible to appropriately tune the system parameters so as to
nearly mutually cancel the effects of the linear and nonlinear lattices and produce a wave that
is propagating at nearly-constant speed.

It would be especially interesting to apply similar considerations to the case of dark
solitons in repulsive BECs and examine their impact on the spectrum in the spirit of the recent
work of [37] (for the proof of existence of dark solitons in different lattice potentials, see [38]).
Similar considerations could subsequently be extended to higher-dimensional settings, where
an important relevant example would be the influence of the lattice potentials to the existence
and stability of structures with vorticity [39, 40].
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